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Abstract

Emergency department (ED) triage decisions critically impact patient care and are standardized,
yet ethnoracial disparities in triage assignment are well documented. We analyzed ethnoracial differ-
ences in triage assignments across four U.S. EDs (two adult, two pediatric), comprising 1.4 million
encounters from 2011–2025. To better characterize these disparities, we developed an automated
triage algorithm that replicates the Emergency Severity Index (ESI) criteria, the standard triage pro-
tocol used at each site. The algorithm identifies high-acuity symptoms and danger-zone vital signs
that inform triage decisions at the level-2 (emergent) versus level-3 (urgent) boundary. We compared
nurse triage assignments across ethnoracial groups, stratified by algorithmic ESI scores, using causal
inference methods to adjust for clinical presentation and hospital context. Significant ethnoracial
disparities in triage assignment were observed across all sites. Disparities were concentrated among
patients algorithmically classified as lower risk but assigned higher acuity by nurses. This pattern
is consistent with a “benefit-of-the-doubt” disparity, in which relatively stable, non-Hispanic White
patients are more often assigned higher priority than Hispanic and non-Hispanic Black patients with
comparable presentations. By contrast, disparities were attenuated or absent among patients deemed
high risk by both nurses and the algorithm. Finally, analysis of the projected length-of-stay impact
of substituting nurse-assigned with algorithmic triage scores suggests that algorithmic ESI decision
support could reduce triage disparities with minimal effects on patient flow.
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1 Main

Nearly two decades after the Institute of Medicine declared emergency departments (EDs) to be “at the
breaking point” [1], overcrowding continues to strain U.S. EDs [2–4]. There were 155.4 million visits to
U.S. EDs in 2022, roughly 47 per 100 people [5]. All ED visits begin with nurse triage, a process that
assigns urgency and shapes downstream care (e.g. admission, length of stay). Consequently, even small,
unwarranted variation in triage assignment may contribute to disparities in timeliness of care, length of
stay, and mortality risk [6].

To reduce such variation, healthcare systems have adopted standardized triage protocols intended
to support objective, repeatable assignments. The most widely used is the Emergency Severity Index
(ESI) [7, 8], developed in 1998 and used in 94% of U.S. EDs as of 2019 [8]. ESI is a five-level scale
intended to reflect urgency and risk of deterioration (1- immediate, 2- emergent, 3- urgent, 4- semi-
urgent, 5- non-urgent). ESI is determined from clinical characteristics, including “high-risk” symptoms
and “danger-zone” vital signs, and does not explicitly incorporate sex or race/ethnicity.

ESI is intended to standardize triage assessments, yet studies show frequent misapplication (59%
accuracy [9]) and high inter-rater variability [10, 11]. Moreover, the process of assigning ESI scores may
be susceptible to bias. Retrospective studies report that Black and Hispanic patients may be assigned
less urgent scores than White patients [12–15], potentially contributing to longer waits, less comprehen-
sive evaluation, misallocation of resources, and fewer admissions. Assignment practices also vary across
sites, and the questions used to elicit and document patient status vary across triage nurses [16]. To
reduce unwarranted variation, it is critical to identify where bias may enter the triage decision pathway,
particularly at the boundary separating high-acuity patients (ESI 1–2) from lower-acuity patients (ESI
3–5), who can generally wait to be seen.

This requires identifying the conditions under which disparities in triage assignment arise. We hypoth-
esized that ethnoracial disparities would be enriched in pathways that (1) carry less apparent clinical
risk and (2) rely more heavily on subjective clinical judgment. We tested these hypotheses by implement-
ing an automated ESI algorithm and generating algorithmic scores for approximately 1.4M encounters
from four U.S. EDs over a 15-year period (Fig. 1). This enabled stratification of nurse-assigned triage by
agreement with handbook criteria and finer separation of apparent high- versus low-risk visits. We then
used causal inference methods to estimate the association between ethnoracial identity and the odds of
receiving an emergency (ESI 2) nurse triage assignment, stratified by algorithmic ESI assessment.

We analyzed 1,381,873 encounters at four EDs serving adults on the East (AE: 398,661 encounters)
and West coasts (AW: 116,063 encounters) and children on the East (PE: 339,400 encounters) and
West coasts (PW: 527,749 encounters). The cohort was diverse (30.8% Non-Hispanic White, 12.6% Non-
Hispanic Black, 36.7% Hispanic, 5.1% Asian, and 10.4% Other); see Table S1. We focused on encounters
assigned ESI levels 2 and 3, which comprise the majority of visits and represent the critical boundary
between emergent (ESI 2) and urgent (ESI 3) care (Fig. 1E). This boundary is also strongly associated
with admission likelihood (Fig. 1E) and is therefore a setting in which clinician judgment can meaningfully
shape downstream care. Accordingly, the final cohort included encounters assigned ESI level 2 (AE:
33.2%, AW: 23.6%, PE: 24.5%, PW: 15.3%) or level 3 (AE: 53.9%, AW: 65.5%, PE: 47.1%, PW: 27.7%)
at triage, totalling 342,232 (AE), 103,029 (AW), 242,734 (PE), and 226,864 (PW) encounters. Additional
cohort details are provided in Table S1.

Comparison of nurse-assigned and algorithmic ESI scores showed substantial discordance (Fig. 1F),
particularly for algorithmic ESI level 2, consistent with subjectivity at the level-2/3 boundary. To assess
the validity of algorithmic assignments, we compared admission rates conditional on nurse-assigned and
algorithmic ESI scores (Fig. 1G). Encounters assigned nurse level 2 were less likely to be admitted
when the algorithm assigned level 3, and conversely, encounters assigned nurse level 3 were more likely
to be admitted when the algorithm assigned level 2 (p < 6.1e-3, Mann–Whitney–Wilcoxon test, two-
sided). These results support that the ESI handbook algorithm captures clinically meaningful severity
information beyond nurse-assigned triage.
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Fig. 1 Emergency Severity Index (ESI) algorithm implementation and validation. A) Original ESI algorithm
flowchart with triage levels 2 and 3 highlighted in red and green, respectively. B) Computational implementation of ESI
algorithm levels 2 and 3, including high-risk symptom detection (box b) and danger-zone vital sign detection (box d).
Algorithm ESI levels 2 and 3 are highlighted in red and green. C) Propensity score matching pipeline workflow. D)
Distribution of nurse-assigned triage levels. Levels 2 and 3 are most common overall. E) Nurse-assigned triage level is
associated with admission. Patients assigned high acuity (levels 1–2) are more likely to be admitted than those assigned levels
3–5. F) Concordance between algorithmic and nurse-assigned triage at levels 2 and 3. Roughly half of algorithmic level-2
encounters are assigned nurse level 3, whereas algorithmic level-3 encounters more closely agree with nurse assignments.
G) Algorithmic ESI provides diagnostic information beyond nurse-assigned triage. Encounters assigned a more urgent
algorithmic score than the nurse-assigned score are more likely to be admitted (right panel), and vice versa (left panel),
across sites. p-value annotation legend: *: 1.00e-02 < p <= 5.00e-02; **: 1.00e-03 < p <= 1.00e-02; ***: 1.00e-04 < p <=
1.00e-03; ****: p <= 1.00e-04.
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Fig. 2 Ethnoracial disparities in emergency triage assignment by algorithmic ESI assessment. Odds ratios of
receiving a nurse-assigned ESI level 2 (emergent) relative to Non-Hispanic White patients. Each subplot represents a care
center (AW, AE, PW, PE). Results are shown for Hispanic, Non-Hispanic Black, Asian, and Other groups (y-axis). Results
are further stratified by algorithmic triage assignment (y-axis). Adjusted odds ratios (ORs) are shown with 95% confidence
intervals (CIs). Statistical significance of differences relative to Non-Hispanic White patients is denoted by asterisks in the
test column accompanying the ORs. Additional within-group tests compare ORs across algorithmic triage levels and are
denoted by vertical asterisks. p-value annotation legend: *: 1.00e-02 < p <= 5.00e-02; **: 1.00e-03 < p <= 1.00e-02; ***:
1.00e-04 < p <= 1.00e-03; ****: p <= 1.00e-04.

We estimated the odds of receiving a nurse-assigned ESI level 2, relative to propensity-matched Non-
Hispanic White encounters, stratified by ethnoracial group and algorithmic triage level (Fig. 2). Across
centers, Hispanic and Non-Hispanic Black patients generally had lower odds of nurse-assigned level 2 than
matched Non-Hispanic White patients. For Hispanic patients, odds were lower at all centers (OR, AW:
0.91 [0.88–0.95]; AE: 0.75 [0.72–0.78]; PW: 0.85 [0.84–0.87]; PE: 0.83 [0.81–0.85]). Similarly, Non-Hispanic
Black patients had lower odds at three of four centers (AW: 0.87 [0.80–0.95]; AE: 0.73 [0.71–0.74]; PE:
0.85 [0.81–0.85]).

When stratified by algorithmic triage level, disparities were more pronounced among encounters
assessed as lower risk (algorithmic level 3). Hispanic patients had reduced odds of high-acuity triage
compared to matched Non-Hispanic White patients at all centers (AW: 0.81 [0.76–0.86]; AE: 0.73 [0.69–
0.77]; PW: 0.78 [0.76–0.80]; PE: 0.78 [0.75–0.82]). Non-Hispanic Black patients showed similar patterns
at three of four centers (AW: 0.80 [0.69–0.92]; AE: 0.71 [0.68–0.73]; PE: 0.80 [0.75–0.84]). By contrast,
among algorithmic level-2 encounters, disparities persisted but were generally attenuated for Hispanic
patients at three centers (AE: 0.87 [0.82–0.93]; PW: 0.90 [0.88–0.92]; PE: 0.81 [0.78–0.84]). Non-Hispanic
Black patients likewise showed reduced but persistent disparities at two centers (AE: 0.79 [0.76–0.82];
PE: 0.90 [0.86–0.93]). Overall, patients assessed as lower risk by the algorithm (level 3) exhibited larger
disparities than those assessed as higher risk (level 2) across multiple centers (Hispanic: AW, AE, and
PW p < 0.001; Non-Hispanic Black: AE and PE p < 0.001).

A more granular analysis of alignment between algorithmic ESI and nurse-assigned triage revealed
site-specific differences in how ESI level-2 criteria were applied. The ESI algorithm first evaluates high-
risk symptoms and then danger-zone vital signs when determining level 2. However, centers differed in
the relative contribution of these factors to nurse-assigned level-2 decisions (Fig. S1). In the Western
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adult and pediatric centers (AW and PW), nurses more often assigned level 2 in the presence of danger-
zone vital signs than high-risk symptoms. Conversely, in the Eastern centers (AE and PE), nurses more
frequently assigned level 2 based on high-risk symptoms than danger-zone vital signs.

A key translational question is whether algorithmic ESI scores could serve as clinical decision support
to reduce disparities while preserving patient flow. To probe this, we estimated the impact on ED length
of stay (LOS) if algorithmic ESI scores were used in place of nurse-assigned triage scores. We used an
accelerated failure time model to estimate the expected change in ED LOS under replacement of nurse-
assigned with algorithmic scores, evaluated at triage. At sites AW, AE, PW, and PE, algorithmic ESI
would change the proportion of level-2 assignments by 75.7%, -0.1%, 30.5%, and 44.3%, and change the
proportion of level-3 assignments by -27.3%, 0.1%, -16.9%, and -23.1%, respectively. Replacing nurse-
assigned scores with algorithmic scores was estimated to increase mean ED LOS by 2.0% [2.0–2.1], 1.0%
[0.9–1.0], 3.4% [3.4–3.5], and 4.6% [4.5–4.7] at sites AW, AE, PW, and PE, respectively. In AW, where
time to admit/discharge decision is available, the estimated change in time to disposition was negligible
(-0.1% [-0.1–0.0]). Given the high prevalence of level-3 encounters, a large relative increase in level-2
assignments can be partially offset by a small relative decrease in level-3 assignments. In practice, an ESI
algorithm would be decision support rather than a replacement for clinician judgment, and these results
suggest potential to reduce disparities with modest or negligible impact on ED throughput.

In summary, we observed significant ethnoracial disparities in triage assignment across four diverse
emergency departments, with under-prioritization of minoritized patients relative to Non-Hispanic White
patients across centers. These disparities persisted after adjustment for clinical, demographic, and hos-
pital factors available at triage. Notably, disparities were most pronounced among encounters assessed
as lower urgency by the ESI algorithm. These findings indicate that disparities are concentrated in dis-
cretionary triage decisions where clinicians may be more willing to (differentially) extend the benefit of
the doubt, particularly for patients assessed as lower risk by standardized criteria.

Beyond documenting disparities, these findings have important implications for emergency care
practice and quality improvement. Our results suggest that the ESI framework, while standardized in
principle, is operationalized in ways that allow subjective judgment to differentially influence triage deci-
sions at key decision boundaries. Algorithmic or rules-based decision support that explicitly encodes
ESI criteria could therefore serve as a tool to promote consistency in triage assignment, particularly for
patients whose presentations fall near acuity thresholds.

Such tools could be integrated into triage workflows as decision aids rather than replacements for
clinical judgment, and may inform updates to triage training, audit processes, and quality assurance
programs by identifying systematic deviations from guideline-based criteria. More broadly, our findings
highlight the need for triage systems and clinical practice guidelines to be evaluated not only for overall
accuracy and efficiency, but also for their equity impacts in real-world implementation. Careful design,
monitoring, and governance of decision support tools will be essential to ensure that efforts to standard-
ize triage reduce—rather than entrench—existing disparities at the point of first contact in emergency
departments.

2 Methods

Here we describe ESI algorithm development, the causal inference approach to estimating disparities in
triage assignment, and data preparation for the study.

2.1 ESI Algorithm Development

2.1.1 High-risk patient identification

According to the ESI handbook [8], level-2 criteria include conditions that may rapidly deteriorate or
require time-sensitive treatment (Fig. 1A). To computationally replicate this, we extracted 104 high-risk
keywords from the ESI handbook and matched them to ED chief complaints (Fig. 1B).

2.1.2 Danger zone vitals identification

When high-risk symptoms are absent but multiple resources are anticipated, ESI next considers vital
signs (Fig. 1A). This assessment includes heart rate, respiratory rate, and oxygen saturation. If any
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vital sign exceeds the danger-zone threshold and multiple resources are anticipated, ESI recommends
escalation to level 2 [8].

To implement this component, we stratified patients into age groups and compared triage vital signs
with age-specific danger-zone thresholds. If any of the three vital signs exceeded threshold, the algorithm
assigned level 2. Recent versions of the ESI handbook introduce a “consider” factor [8], allowing clinician
discretion when danger-zone vital signs are present, whereas earlier versions did not [7]. We followed the
original ESI definition, in which any danger-zone vital sign results in automatic assignment to level 2.
We further examine this in Fig. S1.

2.2 Statistical Analysis

We used causal inference methods to estimate the association between patient race/ethnicity and the
odds of receiving an emergency (ESI 2) nurse triage assignment. We approximated the causal effect
by matching encounters on clinical presentation and contextual factors before estimating adjusted odds
ratios. The approach is described below.

2.2.1 Exposure of interest and outcome measure

The primary exposure was patient race/ethnicity, categorized as Hispanic, Non-Hispanic Black, Asian,
and Other. Encounters with race/ethnicity recorded as “Unknown” were excluded (3.8% on average
across datasets) due to uncertainty and potential misclassification. The primary outcome was assignment
to nurse-assigned ESI level 2 at triage.

2.2.2 Adjustment variables

We adjusted for variables available at triage and, where available, diagnoses recorded during the visit
to support clinically meaningful matching. All datasets included sex, age, arrival mode, number of prior
visits (with and without admission), comorbidity index, triage vital signs (heart rate, respiratory rate,
oxygen saturation), and chief complaint. PE and PW additionally included preferred language, social
deprivation index, miles traveled, state of origin, number of patients at arrival, and weight. Temporal
variables (year and time of arrival) were available for PE and PW, and insurance information was
available for PE, PW, and AW.

2.3 Odds ratio calculation

To assess disparities in ESI level assignment, we performed propensity score matching and estimated
adjusted odds ratios [17], using Non-Hispanic White patients as the reference group because it was
the largest group overall. For each comparison, analyses were restricted to encounters from the focal
ethnoracial group and the reference group. Propensity scores were estimated using logistic regression with
ridge regularization, incorporating covariates described in Section 2.2.2. Matching was performed using a
ball-tree nearest-neighbors algorithm [18], with calipers of 10% and 20% of the standard deviation of fitted
propensity scores. This approach achieved covariate balance across groups, with absolute standardized
mean differences ≤ 0.1 for all covariates [17].

Odds ratios were computed in matched samples using McNemar’s test with Bonferroni correction for
multiple comparisons following 1:1 nearest-neighbor matching. This test assumes independence between
matched pairs and conditional independence of outcomes within pairs given the matching variables,
assumptions that are reasonable given the encounter-level analysis and strict matching criteria. Differ-
ences across algorithmic triage strata within an ethnoracial group were assessed using a z-test, which
assumes approximate normality of the log-odds ratio estimates and independent variance estimates across
strata. Given the large sample sizes within strata, these normal approximation and variance assumptions
are expected to hold.

2.4 Dataset Preparation

Each dataset was filtered for quality control (see Table S2). Visit records were discarded if any of the
following criteria were met: unknown sex (i.e. sex recorded as U or X); missing demographic information;
missing patient identifier; disposition other than admission or discharge (e.g. death, left without being
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seen, left against medical advice), or missing disposition with no associated vitals (suggesting departure
before triage); missing chief complaint or primary visit diagnosis for datasets where these were recorded
separately (suggesting data loss rather than inability to report a complaint); implausibly long visit
length in the context of the dataset (generally ≥ two weeks), suggesting a recording error; irreconcilable
timestamps (e.g. departure time earlier than arrival time).

Variables were processed into categories as described in Table S3. We aimed for consistency across
datasets but were constrained by site-specific recording practices. For example, PE recorded both sex
and gender, PW and AE recorded only sex, and AW recorded only gender, which was not defined and
was assumed to reflect provider-recorded sex. Race/ethnicity recording also differed; notably, AE defined
Hispanic’, White’, and ‘Black’ as mutually exclusive categories, whereas other sites recorded Hispanic
ethnicity separately from race. We harmonized categories as Hispanic, Non-Hispanic Black, Non-Hispanic
Asian (denoted Asian”), Non-Hispanic White, Non-Hispanic Other (denoted Other”), and “Unknown”.

Temporal variables (e.g. month, year, crowding) were unavailable for adult datasets, which obscured
visit dates for deidentification. In AW, age was shifted by up to two years (all patients were ≥18 years,
so this shift does not affect ESI algorithm assignments). Both adult datasets truncated ages above 90 at
first visit; because such patients were rare, we coarsened older ages into an ‘80+’ group.

Where available, socio-economic and geographic measures (e.g. miles traveled) were divided into
dataset-specific quartiles. Socio-economic deprivation scores were obtained from the Robert Graham
Center database (2019; most recent available) [19]. This resource assigns a score from 1 (least deprived)
to 100 (most deprived) to each U.S. zip code. Distance traveled to the hospital was computed assuming
travel from the patient’s home address.

Chief complaints were grouped using adult and pediatric schemas from [20] and [21], respectively,
with site-specific additions where needed to capture common reasons for visit (e.g. shingles for AW; see
preprocessing code for details). Primary diagnoses were transformed into binary indicators corresponding
to Charlson Comorbidity Index categories for adult datasets (using the R package comorbidity) and the
Pediatric Comorbidity Index [22] for pediatric datasets. Where available, prior diagnoses (comorbidities)
were encoded similarly (e.g. prior diabetes, congestive heart failure, renal disease, cancer). For AE, where
prior diagnoses were unavailable, we extracted therapeutic medication classes at the time of visit as
proxies for chronic conditions, yielding 85 binary indicators (e.g. thyroid therapy).

Supplementary information. Code supporting this analysis is available at https://github.com/
cavalab/ESI. The repository includes scripts for dataset preparation and analysis. Supplementary mate-
rials include additional cohort descriptions, analyses of the ESI algorithm, and tables documenting
preprocessing decisions.
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